金沙贵宾会2999金沙贵宾会2999

金沙贵宾会2999
    金沙贵宾会2999 > 金沙贵宾会2999 >

雅可比行列式在体积元变换中的公式怎么证明

  雅可比行列式通常称为雅可比式(Jacobian) 它是以n个n元函数的偏导数为元素的行列式 .事实上,在函数都连续可微(即偏导数都连续)的前提之下,它就是函数组的微分形式下的系数矩阵(即雅可比矩阵)的行列式.若因变量对自变量连续可微,而自变量对新变量连续可微,则因变量也对新变量连续可微.这可用行列式的乘法法则和偏导数的连锁法则直接验证.也类似于导数的连锁法则.偏导数的连锁法则也有类似的公式;这常用于重积分的计算中.如果在一个连通区域内雅可比行列式处处不为零,它就处处为正或者处处为负.如果雅可比行列式恒等于零,则函数组是函数相关的,其中至少有一个函数是其余函数的一个连续可微的函数.